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The cellular scale of biology

• Cells are the basic unit of structure and
function in living organisms

• Cells are characterized by their ’types’
that are diverse

• Physiology emerge thanks to complex
interactions between different cell-types

[2]
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From bulk to distributions of gene expression

[2]

4 / 58



A timeline: produced data
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Machine Learning challenges

• Dimension Reduction / Visualization

• Clustering cell-type discovery (non
supervised and semi supervised)

• Datasets alignments for non-matched
samples

• Catch cells-ecosystems behaviors

• Simulation of fake data

• Data integration

• Statistical Testing (compare genes
expression) [1]
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Single-Cell from a statistician’s perspective

From 10X Genomics
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Differential Expression Analysis

• Compare the expression of each gene
between conditions

• Statistical Testing

→ compute the difference
→ control type-I errors

• Single-cell data n ∼ 106

• Try non-parametrics !

Deviation from Global Mean

Expression Levels
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Statistical Setting: two-sample test

• logFC are valid provided µ and σ are
good summaries of the information

• Easy linear separation

• Not adapted to single-cell assays

Gaussian 
Distribution

easy separation
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sc-RNAseq data are count data

• Specificities: discrete, zeros

• How to define the signal-to-noise ratio ?

• Standard: Negative Binomial distribution

• No simple linear separation

• Try parametric Generalized Linear Models

Negative-Binomial
Distributions

heavy dispersion

Importance of 
zero counts

No Simple 
separation
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sc-RNASeq are complex count distributions

Compare Gene Expression distributions P1 vs P2
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Difference in Expression Different Modes Different Proportions Difference in Both

→ No simple linear separation
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Strong dependencies and lots of data

• Gene Expressions are highly dependent

• Consider the multivariate model

• Xic = [X 1
ic , . . . ,X

G
ic ], µi = [µ1

i , . . . , µ
G
i ]

E(Xic) = µi , V(Xic) = Σ

• Σ can be inferred accurately

• Powerful Linear Gene-Set Analysis

Distribution of gene expression across cells
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What about other single-cell data ?

• Single-Cell ChipSeq has become popular

• Map binding sites in population of cells

• Differential Analysis is also a challenge

• Should we build a new reference model
for each single-cell assay ?

https://tunetx.com/
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Why is statistical modeling so important ?

• Much energy has been spent to understand the distribution of sc-RNASeq data

• Statistical testing is based on what is expected under H0

→ Risk: detect a difference whereas the appropriate model there would not
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Take-Home Message Slide (1)

✓ Single-cell data are complex distributions

✓ the logFC may not be adapted to every situation

✓ pseudo-bulk approaches are possible (GLM)

✓ Only based on summary statistics

✓ A dedicated framework is required to perform differential analysis based on distributions
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Comparing Gene Expression Distributions
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Difference in Expression Different Modes Different Proportions Difference in Both

• Single-cell differential expression by distributions comparison :

H0 :
{
P1 = P2

}
• No simple linear separation → SNR is not relevant anymore
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Comparing Distribution Functions
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Difference in Expression Different Modes Different Proportions Difference in Both

• A strategy consists in comparing cumulative distribution functions:

H0 :
{
F1 = F2

}
• Estimate cumulative distribution functions can be costly

• Difficult to generalize for gene sets
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Comparing embedded distributions

R
a
w

 d
a
ta

Difference in Expression Different Modes Different Proportions Difference in Both

• Idea: transform data into a new space

• Use SNR and linear separation on the transformed data
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Data transformation for better separation

Healthy

Disease

No linear separation

Healthy

Disease

Linear separation
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Rich Representations of complex data

Embedding 1
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Disease

Work on joint transcriptomic embeddings

Embedding 1
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Healthy

Disease

mean embeddings

Mean embeddings by condition
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What is an embedding ?

• Transform the input data Xi → ϕ(Xi )

• New representation (UMAP, tSNE)

• Easy separation after transformation ?

• How to choose ϕ ? Input Space Feature Space
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Kernel Methods provide powerful embeddings

• Similarity between data dist
(
Xi ,1,Xi ,2

)
• Similarity between embeddings

K (Xi ,1,Xi ,2) = dist
(
ϕ(Xi ,1), ϕ(Xi ,2)

)
• Can work with any input data

• Differential analysis on embeddings
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Quick intro on kernel methods

• Kernel function : X a measurable space:

k(•, •) : X × X → R.

• k(•, •) is a positive definite kernel iif K is symmetric and positive definite.

∀(x1, . . . , xn) ∈ X n, K =
[
k(xi , xj)

]
i ,j

∈ Mn(R)n

∀(c1, . . . , cn) ∈ Rn,
∑
i ,j

cicjk(xi , xj) ≥ 0
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Aronszajn Theorem

• k(•, •) is positive definite iif there exists a Hilbert space Hk from X → R and a feature
map ϕ

ϕ : X → Hk

ϕ(x) = k(x , •)
∀(x , x ′) ∈ X 2 : k(x , x ′) = ⟨ϕ(x), ϕ(x ′)⟩Hk

.

• Hk is called a Reproducing Kernel Hilbert Space (RKHS)

• Choosing k(•, •), determines the unique RKHS and the so-called feature map function

ϕ : X → Hk

25 / 58



Embedding distributions

• Define the representer µP of P in Hk ,
such that

P → µP =

∫
k(x , •)dP(x)

• µP is called the mean embedding of
distribution P:

µP = EX∼P

(
ϕ(X )

)
Embedding 1

Em
be

dd
in

g 
2

Healthy

Disease

mean embeddings

Mean embeddings by condition
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Particular case : characteristic kernel

• If k(•, •) is characteristic, then :

(P1 = P2) in X ⇐⇒ (µP1 = µP2) in Hk

• Come back to a test on equality of means in Hk

• We will consider the Gaussian kernel:

kσ(x , x
′) = exp

(
− 1

2σ2
∥x − x ′∥22

)
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Kernel Covariance Operators

• Represent distribution beyond the mean embedding

• Quantify the variability of the embeddings

• The kernel covariance operator is the covariance of the embeddings:

ΣP = EX∼P

[
(ϕ(X )− µP)⊗ (ϕ(X )− µP)

]
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Take-Home Message Slide (2)

✓ Standard Differential Expression procedures can be applied by averaging data (pseudo
bulk)

✓ Propose tests based on distributions comparisons

✓ Work on the embedding of distributions using a kernel

✓ Describe the distributions by the mean and the covariance of the embeddings

29 / 58



Outline

1. The Single-Cell Revolution

2. Comparison of Gene Expression Distributions

3. Introduction to kernel testing

4. Discussion about methods

5. Towards perturbation analysis

30 / 58



Metric between distributions

• Testing H0 requires a metric between distributions

H0 :
{
P1 = P2

}
• Expected property of the metric

P1 = P2 ⇔ µP1 = µP2 .

• The Maximal Mean Discrepancy:

MMD2(P1,P2) = ∥µ1 − µ2∥2Hk

31 / 58



Computing the empirical MMD

• Embed the observations in Hk and define the empirical mean embeddings

µ̂1 =
1

n1

n1∑
i=1

ϕ(Xi ,1) µ̂2 =
1

n2

n2∑
i=1

ϕ(Xi ,2)

• Compute the empirical MMD as a test statistic

M̂MD
2

= ∥µ̂2 − µ̂1∥2H
=

1

n1(n1 − 1)

∑
i ̸=j

k(Xi ,1,Xj ,1) +
1

n2(n2 − 1)

∑
i ̸=j

k(Xi ,2,Xj ,2)

− 2

n1n2

∑
i ,j

k(Xi ,1,Xj ,2)
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Interpretation :Pair-Wise kernelized Distances

• The MMD can be viewed as a testing framework based on kernelized distances

• Intra-condition distances

1

n21

n1∑
i=1

n1∑
i ′=1

K (Xi ,1,Xi ′,1) and
1

n22

n2∑
i=1

n2∑
i ′=1

K (Xi ,2,Xi ′,2)

→ If small, conditions are homogeneous

• Inter-condition distance
1

n1

1

n2

n1∑
i=1

n2∑
i ′=1

K (Xi ,1,Xi ′,2)

→ If high, conditions are well separated
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Statistical Testing with pair-wise distances

Reject Accept
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Intra-Inter trade-off between embeddings variabilities

• Separated Conditions:
ΣWithin ≪ ΣBetween

• Similar conditions :
ΣWithin ∼ ΣBetween

• Construct the discriminant ratio

R = Σ−1
WithinΣBetween
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Definition of Intra/Inter Variance of embeddings

• The MMD is linked to the between-group covariance

Σ̂B =
n1n2
n2

(
µ̂2 − µ̂1

)⊗2

• Define the within-group covariances Σ̂1 and Σ̂2

Σ̂1 =
1

n1

n1∑
i=1

(
ϕ(X1,i )− µ̂1

)⊗2
, Σ̂2 =

1

n2

n2∑
i=1

(
ϕ(X2,i )− µ̂2

)⊗2

ΣW =
n1
n
Σ1 +

n2
n
Σ2
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The Normalized MMD

• The normalized MMD statistics is

D2(P1,P2) =
n1n2
n

∥∥∥∥Σ− 1
2

W (µ2 − µ1)

∥∥∥∥2
H

∼ 1

n
Tr

(
Σ−1
W ΣB

)
• It is a kernelized discriminant ratio

• Classifier-based testing: kernel Fisher Discriminant Analysis
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Statistical Challenges

• Explore the expected variations of the MMD of D2 under P1 = P2.

• The target is the (1− α) quantile of the distribution

PH0

(
M̂MD

2
> q1−α

)
< α

PH0

(
D̂
2
> q1−α

)
< α

• The approximate distribution can be asymptotic / non-asymptotic

• Permutation strategies are also possible to estimate q1−α
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Take-Home Message Slide (3)

✓ Kernel methods can be used to define discrepancies between distributions

✓ Kernel tests are based on pair-wise distances between embeddings

✓ These distances can be normalized by embeddings variability

✓ pvalues can be obtained (approximations)
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Methods comparison on experimental datasets
• 18 published datasets [4] / 20 methods
• Compare AUCCs based on reference gene lists
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Methods comparison on experimental datasets

• 18 published datasets [4] / 20 methods

• Check the summary statistics characteristics of rejected distributions

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
average gene expression

top 500 DE genes top 500 DE genes

ktest
ktest-ZI-kernel

MAST
wilcox

poisson
bimod

negbinom
LR

t
limma-voom
limma-trend

DESeq2-Wald
edgeR-QLF
edgeR-LRT

DESeq2-LRT

ktest
ktest-ZI-kernel

MAST
wilcox

poisson
bimod

negbinom
LR

t
limma-voom
limma-trend

DESeq2-Wald
edgeR-QLF
edgeR-LRT

DESeq2-LRT

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
proportion of zeros

42 / 58



Methods comparison on experimental datasets
• 18 published datasets [4] / 20 methods
• Check distribution forms of rejected hypothesis

0 2 4 6 8 10 12
gene expression

DHX36

CCNL1
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ACTR3
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ND2
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RPL10A

RPL26
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S100A10

Non DE in pseudo Bulk - Non DE in scDEA methods
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Gene-Set Differential Analysis
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ChemoResistance in Triple Negative Breast Cancer

• Emergence of resistant phenotypes is a
multi-step process

• After drug insult only a pool of
drug-tolerant persister cells manage to
tolerate the treatment and survive.

• Reservoir from which drug-resistant cells
can ultimately emerge.
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Kernel testing on Persister vs. Naive cells

• Persister cells survived the first treatment

• Reservoir for resistant cells

• Epigenomic data: 6376 features

• Compare untreated (∼ 3000 cells) vs.
persister (∼ 2000 cells)

• Did we identify the reservoir of persister
cells based on their epigenomic signatures
?

0.00000

0.00005

0.00010

0.00015

0.00020

−10000 0 10000

Naive

Intermediate

Persister-Like

Persister

Summary of Whole Epigenome differences
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https://github.com/LMJL-Alea/ktest
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From Differential Analysis to Perturbation Analysis
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Differential Analysis of Transcriptomes
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Cells are grouped in Cell Types
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Detecting Perturbed Cell Types
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Differential Perturbation
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Perturbed Mean Embeddings
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ANOVA for non-linear Embeddings

• Complex design : treatment, cell types factors

ϕ(Expression) = µ+ αtreatment ++βcelltype +
(
αβ

)
treatment×celltype

+ Error

• Identify Perturbed cell types with the interaction terms

H⋆
0 :

{(
αβ

)
Healthy×⋆ =

(
αβ

)
Disease×⋆

}
H◦0 :

{(
αβ

)
Healthy×◦ =

(
αβ

)
Disease×◦

}
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Non-Linear perturbations following Covid Exposure
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Covid DataSet
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Atypical Cells identification Multi-patients Designs
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kAOV: kernel testing for general designs

• General Model for kernel testing in any design:

ϕ(Y) = Xβ + E

• Embedding-Based Constrast Testing:

H0 =
{
Cβ = 0

}
• Hotelling-Lawley Trace Test (χ2 distributed)

• Package available : https://github.com/LMJL-Alea/kAOV
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