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Predictive genome-scale metabolic models (GSMs) have become standard
tools for systems-level analysis of metabolism in contexts ranging from biotech-
nology to cancer 3. They rely on incorporating mass balances and potentially
other constraints on the operation of metabolic networks at steady-state. In bi-
ased methods such as flux balance analysis (FBA), assumptions on biological
objectives (e.g., bacteria maximizing their growth rate) allow to predict specific
flux distributions by optimization (e.g., by linear programming in FBA). Un-
biased methods for the analysis of all feasible flux distributions are subsumed
under metabolic pathway analysis; they typically involve solving large combina-
torial problems. However, many interactions in microbial consortia or tissues of
multicellular organisms rely on networks of metabolite exchanges, where multi-
ple species interact metabolically via a shared environment. In the multi-species
setting, biased methods either require assumptions on community objectives
that are biologically questionable, or model augmentations by often unknown
kinetics. Unbiased methods are limited by the scalability of current metabolic
pathway concepts to multi-species networks 4.

For unbiased methods, we aim to increase predictive power by relying on
first principles and by systematically quantifying uncertainties. This involves
integrating thermodynamic constraints via probabilistic thermodynamic anal-
ysis (PTA) 2, kinetics via ENKIE, a predictor of enzyme kinetic parameters
1, and optimization over enzyme costs. The resulting method termed global
enzyme cost minimization (GECM) combines MCMC sampling with biconvex
optimization to allow predictions such as alternative metabolic strategies for E.
coli growth that are consistent with experimental observations. GECM thereby
provides predictions of single-species behaviors and their uncertainty—albeit at
high computational cost.

As a potentially complementary unbiased method, we define minimal path-
ways (MPs) that yield compact representations of metabolic network capabil-
ities 5. They generalize existing pathway concepts by allowing inhomogeneous
constraints as well as the targeted analysis of subnetworks. Computationally,
enumeration and sampling of MPs is efficient via iterative minimization and
pathway graphs. This enables applications such as assessing quantitative gene
essentiality in E. coli central metabolism, predicting metabolite exchanges asso-
ciated with homeostasis and health in a host-microbe model of the human gut,
and designing butyrate-producing microbial communities.

In combination, we envisage MPs and GECM to predict metabolic interaction
networks between multiple species as follows: MPs restrict the set of potential
metabolite exchange patterns between individual species and the environment
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in the community context. Application of GECMs to the reduced problem(s)
could then follow to predict actual interactions and their uncertainties. However,
this requires improvements to computational efficiency and numerical stability
of GECM. In perspective, this integration could enable predictions of emergent
community functions and of experimentally testable interactions for applications
such as the human gut microbiome.
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