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Understanding the dynamic behavior of cells and their metabolism is a key
goal in systems biology. Reverse engineering metabolic processes from data is
crucial for uncovering underlying mechanisms, building predictive models, and
optimizing networks for strain engineering and biotechnological applications.
Here, we present three representative case studies that highlight different mod-
eling and optimization strategies.

Among the various modeling approaches, S-systems provide a remarkably
flexible and interpretable framework. They consist of systems of ordinary differ-
ential equations (ODEs) based on a power-law formalism, derived from a first-
order Taylor series approximation in logarithmic space. This structure makes
them well-suited for approximating reaction dynamics without relying on de-
tailed mechanistic information. We present a case study of glycolysis in Lacto-
coccus lactis, modeled using in vivo NMR multivariate time-series of metabolic
concentrations [6]. The structural analysis of the proposed model was initially
used to assess parameter sensitivity and identifiability, thereby enhancing model
interpretability and significantly improving the subsequent reverse engineering
step [5].

While classical ODEs offer a powerful framework for modeling continuous
nonlinear dynamics, they typically assume that model parameters remain con-
stant over time. However, many biological processes, such as cell growth under
nutrient shifts or environmental changes, may exhibit distinct phases and are
therefore better modeled using time-varying parameters. Indeed, these transi-
tions can be more effectively captured using hybrid modeling approaches, which
combine continuous dynamics with discrete state changes. In this context, we
developed SON-EM, a methodology for parameter identification in switched sys-
tems [2], which integrates convex optimization, clustering, and a refinement step
to detect switching points and estimate local parameters. Applied to multiphasic
cell growth, SON-EM successfully captured diauxic transitions and metabolic
shifts using a parsimonious structure based on logistic models, with minimal
manual intervention [3].

Optimization also plays a crucial role in designing metabolic interventions.
We developed OptPipe, a consensus-based pipeline that integrates several algo-
rithms (including OptKnock, RobustKnock, and RobOKoD) to identify promis-
ing gene knockouts and rank them based on growth, target production, and
adaptability metrics [4]. Complementarily, we explored multi-objective optimiza-
tion to identify reaction deletions that simultaneously maximize and/or minimize
multiple objectives, using multi-objective mixed-integer optimization (MOMO),
and applied this approach as a proof of concept to enhance ethanol production
in Saccharomyces cerevisiae [1].



XVII

The presented modeling and optimization methods illustrate how mathemat-
ical frameworks, algorithms, and biological insights can be combined to under-
stand, predict, and manipulate metabolic networks.
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